EconPapers    
Economics at your fingertips  
 

A novel method for predicting the thermal stabilization temperature of organic Rankine cycle system working fluids based on transition state theory

Wei Yu, Chao Liu, Xijie Ban, Zhirong Li, Tianlong Yan, Liyong Xin and Shukun Wang

Energy, 2024, vol. 292, issue C

Abstract: The use of organic working fluids in organic Rankine cycle (ORC) systems may lead to thermal decomposition, which negatively impacts system performance and safety. In this work, a simplified theoretical method based on the transition state theory is proposed to predict the ideal maximum thermal stabilization temperature of organic working fluids. This method involves considering the initial decomposition reaction of the working fluids and calculating the total reaction rate of the initial decomposition. By setting an acceptable decomposition rate, the ideal maximum thermal stabilization temperature of the working fluid can be determined. Using this method, the total reaction rate constants of several typical hydrocarbon, hydrofluorocarbon and siloxane working fluids were obtained in the temperature range of 300∼700 K. The predicted maximum operational temperatures were in good agreement with most experimental results. The branch ratio analyses show that C–C bond cleavage contributed mainly to the decomposition of hydrocarbons, the removal of HF and C–C bond cleavage contributed mainly to that of HFCs, and the Si–C bond cleavage contributed mainly to that of siloxanes. Only considering these main reactions in the reaction rate calculation can greatly reduce calculation cost without significantly impacting the prediction accuracy.

Keywords: Organic rankine cycle; Working fluids; Thermal stability; Reaction kinetics; Transition state theory; DFT (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422400149X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:292:y:2024:i:c:s036054422400149x

DOI: 10.1016/j.energy.2024.130378

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:292:y:2024:i:c:s036054422400149x