Thermal energy demand decarbonization for the industrial sector via an innovative solar combined technology
Meisam Sadi,
Ali Sulaiman Alsagri,
Hamid Reza Rahbari,
Soheil Khosravi and
Ahmad Arabkoohsar
Energy, 2024, vol. 292, issue C
Abstract:
The main motivation of this study is to offer, develop, and optimize a novel solar combined technology to bring sustainability to the industrial sector via supplying 100 % green and cost-effective heating and cooling. The combination of a special type of parabolic trough collector designed to be inexpensive with low-concentration yet high-optical efficiency and a specially developed bio-driven boiler to compensate for the fluctuations of the solar energy is the heart of the proposed system. The article presents a thorough complex optimization and techno-economic-environmental analysis of the proposed solution and conducts a benchmarking analysis against cheap but unsustainable technologies of today's industries for a large case study in Northern Europe. The results prove the strong impacts of the technology in emission reduction and lower cost production of industrial heating and cooling. The solar component of the system fulfills nearly 50 % of the total demand, with the biomass heater, burning sugarcane bagasse, covering the additional demand. For the proposed system, a levelized cost of energy of 69.9 USD/MWh and an emission index of 267.7 tons/GWh are achieved, while the identical and alternative systems would necessitate 9,660, 11,600, and 3860 tons of coal, wood, or LPG, respectively, to fulfill the park's thermal requirements.
Keywords: Decarbonization of industry; Industrial heating and cooling; Hybrid solar technologies; Thermo-economic optimization; Fossil fuel independence (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224002949
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002949
DOI: 10.1016/j.energy.2024.130523
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().