EconPapers    
Economics at your fingertips  
 

Weighted fair energy transfer in a UAV network: A multi-agent deep reinforcement learning approach

Shabab Murshed, Abu Shaikh Nibir, Md. Abdur Razzaque, Palash Roy, Ahmed Zohier Elhendi, Md. Rafiul Hassan and Mohammad Mehedi Hassan

Energy, 2024, vol. 292, issue C

Abstract: Flying Energy Sources (FESs) have been proven highly effective in transferring energy to battery-powered Unmanned Aerial Vehicles (UAVs). Such wireless transfer techniques in the literature were able to extend the flight duration of UAVs; however, they overlooked the fair distribution of energy among UAVs, which is of utmost importance for supporting diverse application demands. In this work, we quantify the urgency level of a UAV following its application responsibility, energy charging, and drainage rates and develop a framework for optimal energy transfer from FESs to UAVs in a weighted-fair way. Even though the developed framework can promote a highly balanced and fair energy distribution, its computation cannot always be done in polynomial time. Alternatively, to achieve a real-time solution, we further develop a Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm, namely AERIAL, to effectively model the complex interactions and dependencies among the UAVs and FESs and improve the wireless energy transfer process. The AERIAL system is implemented in the OpenAI Gym simulator platform and its performances have been compared with the state-of-the-art approaches. As high as improvements of 25.2% in fairness and 19.4% in average energy level demonstrated by the AERIAL system prove its effectiveness.

Keywords: Wireless energy transfer; Unmanned aerial vehicles; Flying energy sources; Weighted fairness; Multi-Agent Deep Deterministic Policy Gradient (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224002986
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002986

DOI: 10.1016/j.energy.2024.130527

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002986