The mechanical response of energy pile groups in layered cross-anisotropic soils under vertical loadings
Zhi Yong Ai and
Wei Yong Feng
Energy, 2024, vol. 292, issue C
Abstract:
The mechanical response of energy pile groups in layered cross-anisotropic soils under vertical loadings is studied with the aid of the coupled finite element method - boundary element method (FEM-BEM). The single energy pile is simulated based on the finite element theory, which then is extended to energy pile groups. The global flexibility matrix for soils is obtained by considering the coupling effects of vertical and thermal loadings. The coupled FEM-BEM equation for the interaction between energy pile groups and soils is derived based on the displacement compatibility condition at the pile-soil interface. According to the displacement coordination condition and force balance in the rigid cap, the displacement of the cap and axial forces of pile groups can be solved. The presented theory is validated by comparing the calculated results with numerical simulations and field test results in existing literature. Finally, effects of the thermal loading, pile-soil stiffness ratio, pile spacing, cross-anisotropy of Young's modulus and the stratification are discussed.
Keywords: Energy pile groups; Layered soils; Cross-anisotropy; Vertical loading; Coupled finite element method; Boundary element method (FEM-BEM) (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224003025
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003025
DOI: 10.1016/j.energy.2024.130531
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().