EconPapers    
Economics at your fingertips  
 

Research on the method of diesel particulate filters carbon load recognition based on deep learning

Tao Qiu, Ning Li, Yan Lei, Hailang Sang, Xuejian Ma and Zedu Liu

Energy, 2024, vol. 292, issue C

Abstract: Because the carbon load inside a diesel particulate filters (DPF) affects the DPF regeneration, and the carbon load recognition is significant for the particulate matter (PM) emission control. It is necessary to investigate an on-board DPF carbon load recognition method because the carbon load cannot be directly measured by sensors. Aiming to build a DPF carbon load prediction model adopting the deep learning method, this paper proposes a DPF carbon load identification model based on different experimental parameters using a layered one dimension convolutional neural network (1D-CNN) method. To improve data validity, this paper adopts two data-processing methods. The data pre-processing adopts data splicing method to complete the construction of the original sample set, and the data after-processing uses wavelet packet transform method to establish the feature sample sets. The model adopts the optimal feature dataset constructed by three input parameters, i.e., temperature difference, pressure difference, and exhaust mass flow, and has both high training accuracy and test accuracy above 90 %. The pressure difference is the most important influencing input parameter, and the three-parameter sample set (ΔT + ΔP + Q) has great recognition accuracy and good model stability with the high training accuracy and test accuracy as well as less iteration.

Keywords: Deep-learning; Diesel particulate filters; Convolutional neural network; Carbon load; Wavelet packet transform (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224003050
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003050

DOI: 10.1016/j.energy.2024.130534

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003050