Experiment and simulation study on energy flow characteristics of a battery electric vehicle throughout the entire driving range in low-temperature conditions
Xilei Sun,
Feng Zhou,
Jianqin Fu and
Jingping Liu
Energy, 2024, vol. 292, issue C
Abstract:
To comprehensively investigate the energy distribution and performance of a battery electric vehicle (BEV), an integrated simulation model based on energy flow test data was developed and validated, and the energy flow characteristics of the BEV throughout the entire driving range in low-temperature conditions were studied. The results show that the battery heat loss and motor energy loss first increase and then decrease with an increment in cycle number, while the transmission loss first decreases and then remains constant. The energy recovery efficiency demonstrates an incremental trend with the number of cycles post-battery charging, while the energy utilization efficiency experiences a decline due to escalating energy losses within the power distribution unit (PDU). The energy flow characteristics of the BEV exhibit a pronounced connection with the speed properties inherent in the driving cycle. The battery charge energy is maximal under Urban Dynamometer Driving Schedule (UDDS), whereas the electricity consumption per 100 km is minimized under China light-duty vehicle test cycle-passenger (CLTC-P). Conversely, the energy utilization and recovery efficiency are the highest under Worldwide Light-duty Test Cycle (WLTC). These findings provide directional insights, theoretical support and data basis for rational performance evaluation and optimal energy distribution of BEVs.
Keywords: Battery electric vehicle; Energy flow; Vehicle test; Integrated simulation; Driving cycles (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422400313X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:292:y:2024:i:c:s036054422400313x
DOI: 10.1016/j.energy.2024.130542
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().