Al2O3 nanoparticles integration for comprehensive enhancement of eutectic salt thermal performance: Experimental design, molecular dynamics calculations, and system simulation studies
Chunlei Wu,
Qing Wang,
Xinmin Wang,
Shipeng Sun,
Yuqi Wang,
Shuang Wu,
Jingru Bai,
Hongyu Sheng and
Jinghui Zhang
Energy, 2024, vol. 292, issue C
Abstract:
Eutectic salts, a promising thermal storage material for the next generation of concentrating solar power plants, have attracted extensive attention. Its thermal performance is a crucial factor affecting the efficient utilization of efficient solar energy. Utilizing NaCl–KCl–LiCl as the phase-change material and introduced Al2O3 nanoparticles to enhance thermal conductivity, thus study explores potential mechanisms for improving heat transfer and thermal storage performance. Experimental and molecular dynamics results consistently showed that doping Al2O3 nanoparticles significantly increased the specific heat and thermal conductivity of eutectic salt. Specifically, at a nanoparticle content of 1.0 wt%, liquid-specific heat and thermal conductivity increased by 44.58 % and 21.43 %, respectively. Experimental and simulation results mutually validated a consistent upward trend. However, nanoparticle introduction unavoidably led to increased viscosity, with a maximum increase of 32.15 %. Subsequently, detailed simulation analysis of a shell-and-tube heat storage unit for composite materials highlighted that heat conduction rate was influenced by both natural convection and heat conduction. Therefore, viscosity and thermal conductivity should be simultaneously considered in the system applications. This scientific strategy holds promise for widespread application of eutectic salts in solar thermal energy storage, further promoting sustainable development of renewable energy.
Keywords: Eutectic salts; Specific heat; Heat storage unit; Molecular dynamics (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224003396
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003396
DOI: 10.1016/j.energy.2024.130567
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().