EconPapers    
Economics at your fingertips  
 

A novel hybrid deep learning model for accurate state of charge estimation of Li-Ion batteries for electric vehicles under high and low temperature

Muhammad Hamza Zafar, Noman Mujeeb Khan, Mohamad Abou Houran, Majad Mansoor, Naureen Akhtar and Filippo Sanfilippo

Energy, 2024, vol. 292, issue C

Abstract: This paper presents a novel architecture, termed Fusion-Fission Optimisation (FuFi) based Convolutional Neural Network with Bi-Long Short Term Memory Network (FuFi-CNN-Bi-LSTM), to enhance state of charge (SoC) estimation performance. The proposed FuFi-CNN-Bi-LSTM model leverages the power of both Convolutional Neural Networks (CNN) and Bi-Long Short Term Memory Networks (Bi-LSTM) while utilizing FuFi optimization to effectively tune the hyperparameters of the network. This optimization technique facilitates efficient SoC estimation by finding the optimal configuration of the model. A comparative analysis is conducted against FuFi Algorithm-based models, including FuFi-CNN-LSTM, FuFi-Bi-LSTM, FuFi-LSTM, and FuFi-CNN. The comparison involves assessing performance on SoC estimation tasks and identifying the strengths and limitations of models. Furthermore, the proposed FuFi-CNN-Bi-LSTM model undergoes rigorous testing on various drive cycle tests, including HPPC, HWFET, UDDS, and US06, at different temperatures ranging from -20 to 25 degrees Celsius. The model’s robustness and reliability are assessed under different real-world operating conditions using well-established evaluation indexes, including Relative Error (RE),Mean Absolute Error (MAE), R Square (R2), and Granger Causality Test. The results demonstrate that the proposed FuFi-CNN-Bi-LSTM model achieves efficient SoC estimation performance across a wide range of temperatures at higher and lower ranges. This finding signifies the model’s efficacy in accurately estimating SoC in various operating conditions.

Keywords: State of charge; Electric vehicles; Deep learning; Evolutionary intelligence; High and low temperatures (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224003566
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003566

DOI: 10.1016/j.energy.2024.130584

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003566