EconPapers    
Economics at your fingertips  
 

Dynamic NOX emission concentration prediction based on the combined feature selection algorithm and deep neural network

Zhenhao Tang, Shikui Wang and Yue Li

Energy, 2024, vol. 292, issue C

Abstract: The development of an accurate nitrogen oxide (NOx) prediction model is difficult because of multiple parameters, strong coupling, and long delay time of selective catalytic reduction (SCR) systems. In this study, a modeling scheme based on combined feature selection, the JAYA optimization algorithm, and deep neural network (DNN) was developed. First, historical operating data preprocessing, including eliminating outlier points and normalization, was completed. Next, a combined feature selection algorithm based on classification and regression tree, random forest, extreme gradient boosting, and maximal information coefficient (MIC) was developed to select critical input variables. Subsequently, the delay time of the input variables was calculated based on the MIC and JAYA algorithm, and the modeling data were reconstructed. Finally, the real-time dynamic prediction of the SCR outlet NOx concentration was realized based on the DNN model. Experimental results based on operation data of 1000 MW ultra-supercritical boiler revealed that the prediction errors of the established models were less than 5%. Thus, could accurately predict the NOx emission concentration at the outlet of SCR system.

Keywords: Selective catalytic reduction; Combined feature selection; Deep neural network; JAYA; Maximal information coefficient (MIC); Delay time (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224003803
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003803

DOI: 10.1016/j.energy.2024.130608

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003803