EconPapers    
Economics at your fingertips  
 

Application of machine learning techniques to predict biodiesel iodine value

G. Díez Valbuena, A. García Tuero, J. Díez, E. Rodríguez and A. Hernández Battez

Energy, 2024, vol. 292, issue C

Abstract: Biodiesel is a good alternative to fossil fuels for conventional engines, but determining the properties of biodiesel can be a time-consuming and resource-intensive process. Therefore, the development of models capable of predicting these properties would be of great importance. In this work, different machine learning models were investigated for predicting the Iodine Value (IV) based on the distribution of fatty acid methyl esters (FAME). For this purpose, a database with 266 examples of biodiesel from different feedstocks (1st, 2nd and 3rd generation) was used along the leave-one-out methodology. The main results of the work are: the double bonds and the distribution of FAMEs are the best attributes for predicting IV and the XGBoost algorithm gives an absolute mean error of 11.4 units; the machine learning models for predicting biodiesel properties need to be trained on a large number and variety of biodiesel examples to better predict and generalize; the use of both ANNs and the hold-out approach of dividing the dataset into train/validate/test are not recommended due to the risk of overfitting and the algorithm's dependence on which examples form each group given the currently available data. The leave-one-out method is most appropriate for estimating model performance.

Keywords: Machine learning; Prediction models; Iodine value; Biodiesel (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224004109
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:292:y:2024:i:c:s0360544224004109

DOI: 10.1016/j.energy.2024.130638

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224004109