Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction
Haixiang Zang,
Dianhao Chen,
Jingxuan Liu,
Lilin Cheng,
Guoqiang Sun and
Zhinong Wei
Energy, 2024, vol. 293, issue C
Abstract:
Accurate photovoltaic (PV) power forecasting is crucial to ensure the safety and stability of power systems, given the penetration of solar energy. Extracting spatial-temporal features from ground-based sky images can greatly improve ultra-short-term PV power forecasting. Previous studies have primarily focused on extracting holistic spatial-temporal features from sky images without considering their interaction, leading to a loss of partial critical features that restricts the improvement of forecasting performance. Hence, this study proposes a novel framework considering the interaction of spatial-temporal features for ultra-short-term PV power forecasting. First, a two-stream network is used to extract spatial and temporal features separately from sky images, aiming to eliminate the negative impact of spatial-temporal feature interaction. Then, a gate unit is employed to fuse the extracted features adaptively. Subsequently, a PV-guided attention mechanism is proposed to enhance forecasting performance by identifying dominant regions within the fused feature map. Last, a time series inference model based on progressive architecture is proposed to forecast future PV power. Comparative results demonstrate that the proposed framework outperforms benchmark frameworks and exhibits higher generalization and robustness in ultra-short-term PV power forecasting.
Keywords: PV power forecasting; Deep learning; Spatial-temporal feature; Ground-based sky image (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224003098
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003098
DOI: 10.1016/j.energy.2024.130538
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().