Construction of digital twin model of engine in-cylinder combustion based on data-driven
Deng Hu,
Hechun Wang,
Chuanlei Yang,
Binbin Wang,
Baoyin Duan,
Yinyan Wang and
Hucai Li
Energy, 2024, vol. 293, issue C
Abstract:
Optimizing the combustion process by predicting combustion parameters during prolonged engine operation is crucial for engine maintenance. This study presents a zero-dimensional (0-D) prediction model that integrates the advantages of model-driven and data-driven approaches. Initially, the snake optimization algorithm (SO) is employed to address the challenges related to low parameter fitting accuracy and multiple solutions in calculating Wiebe parameters. Subsequently, a convolutional neural network-bidirectional long short-term memory neural network (CNN–Bi-LSTM) is devised to establish a nonlinear correlation between operating parameters and Wiebe parameters. The structural parameters of CNN–Bi-LSTM are then optimized using the SO algorithm (SO–CNN–Bi-LSTM). Ultimately, a 0-D prediction combustion model is formulated by amalgamating the Wiebe function with the neural network, enabling real-time prediction of combustion results and generalization analysis of prediction performance under non-calibrated conditions. The findings demonstrate that the combustion model exhibits heightened accuracy, thereby establishing a robust technical foundation for the development of a digital twin in the engine combustion process.
Keywords: Digital twin; Diesel engine; Wiebe function; 0-D model; Deep learning; Data-driven (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224003141
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003141
DOI: 10.1016/j.energy.2024.130543
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().