EconPapers    
Economics at your fingertips  
 

Research on energy management strategy of fuel cell hybrid power via an improved TD3 deep reinforcement learning

Yujie Zhou, Yin Huang, Xuping Mao, Zehao Kang, Xuejin Huang and Dongji Xuan

Energy, 2024, vol. 293, issue C

Abstract: Fuel cell hybrid electric vehicles (FCHEV) are helping to advance the cause of environmental protection as a sustainable form of transportation. An effective energy management strategy (EMS) is crucial to reduce the usage cost of FCHEV and enhance SOC maintenance ability. This study establishes separate degradation models for fuel cells and lithium batteries, incorporating the decay factor of energy sources’ lifetime into the EMS. To address the sparse reward problem during training, a novel energy management strategy algorithm based on deep reinforcement learning is proposed, which combines the twin delayed deep deterministic policy gradient (TD3) algorithm framework with learning rate annealing (AL) and hindsight prioritized experience replay (HPER) optimization methods, resulting in strong training performance. Experimental results demonstrate significant advantages of the EMS based on the HPER_AL_TD3 algorithm over traditional TD3-based approaches. The proposed EMS exhibits superior adaptability to various driving cycles, ensuring stable SOC levels and reducing the overall usage cost. This research aims to enhance the learning capability of EMS based on deep reinforcement learning and contribute to the promotion of FCHEV.

Keywords: Deep reinforcement learning; Energy management; Fuel cell; Hybrid electric vehicle (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224003360
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003360

DOI: 10.1016/j.energy.2024.130564

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003360