Towards energy transition: A novel day-ahead operation scheduling strategy for demand response and hybrid energy storage systems in smart grid
Mohamed Elsir,
Ameena Saad Al-Sumaiti and
Mohamed Shawky El Moursi
Energy, 2024, vol. 293, issue C
Abstract:
Fossil fuel power plants continue to contribute significantly to carbon emissions, necessitating a transition towards cleaner energy sources. Despite the growing presence of renewables within the power systems, the incorporation of carbon capture technologies into the traditional thermal power plants holds great potential in emissions reduction. In this paper, the integration of renewable energy sources (RES) and coal-fired power generation units outfitted with carbon capture schemes is addressed. Multiple demand response (DR) programs and hydropower plants are strategically utilized to increase the power system flexibility. To effectively plan the day-ahead (DA) operation of the power system, a presumed market-clearing framework is adopted and modelled as a risk-constrained two-objective stochastic mixed-integer linear programming problem. The proposed framework helps to tackle the uncertainties related to RES and demand variations by employing a hidden Markovian process (HMP) technique. To simultaneously minimize the system’s operational costs and CO2 emissions, an enhanced version of the augmented ɛ-constraint method is employed. To prove its value, the proposed framework is devoted to the 24-bus IEEE reliability test system (IEEE-RTS). The system features substantial penetration of RES (exceeding 87% of peak load) and standard DR options capacities (less than 25% of peak load). The results show a 24% reduction in load peaks, an over 63% decrease in emissions, and a 17% reduction in the overall operation costs.
Keywords: Energy transition; Demand response; Network-constrained unit commitment; Hidden Markovian process; Risk-constrained two-objective stochastic mixed-integer linear programming (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224003955
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003955
DOI: 10.1016/j.energy.2024.130623
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().