EconPapers    
Economics at your fingertips  
 

Ultra-deep reservoirs gel fracturing fluid with stepwise reinforcement network from supramolecular force to chemical crosslinking

Yining Wu, Xiang Yan, Yongping Huang, Mingwei Zhao, Liyuan Zhang and Caili Dai

Energy, 2024, vol. 293, issue C

Abstract: Hydraulic fracturing stimulation is a crucial treatment for the development of deep/ultra-deep reservoirs. The success of this treatment is highly dependent on the property of the fracturing fluid, particularly its performance and ability to withstand high pressure without degradation. The high temperature and long wellbore characteristics of deep/ultra-deep reservoirs demand fracturing fluid with high requirements for shear resistance and thermal stability. These attributes are crucial for the effective transportation of proppants over long distances and for minimizing fluid loss. Enhancing the chemical crosslinking intensity can improve the thermal stability of the gel fracturing fluid. However, premature crosslinking can result in frictional pressure loss and mechanical degradation of the fracturing fluid along the long wellbore. In this study, polyacrylamide-based quaternary copolymers with a multi-functional imidazole ring are synthesized. The strong supramolecular force existing between the imidazole ring and carboxylic acid allows for sufficient time intervals before initiating the crosslinking reaction through steric effects, thereby alleviating mechanical degradation and reducing excessive frictional pressure loss. Furthermore, the anti-shear ability of the fracturing fluid is strengthened by a three-dimensional physical network structure. Additionally, thermal/shear stability tests demonstrate that the working temperature of the synthetic polymer (SP) gel fracturing fluid can reach up to 160 °C. Moreover, the fracturing fluid degrades without leaving visible residues under static conditions, which is beneficial to maintaining the integrity of the reservoir for post-fracturing treatment.

Keywords: Ultra-deep reservoirs; Hydraulic fracturing; Supramolecular interactions; Delayed crosslinking (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224004043
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004043

DOI: 10.1016/j.energy.2024.130632

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004043