EconPapers    
Economics at your fingertips  
 

Fractional-order long-term price guidance mechanism based on bidirectional prediction with attention mechanism for electric vehicle charging

Likun Hu, Yi Cao and Linfei Yin

Energy, 2024, vol. 293, issue C

Abstract: As the infiltration rate of renewable energy generation (REG) is increasing, the power balance of power systems needs to be maintained urgently. Electric vehicle (EV) as a widely distributed demand-side flexibility resource can be utilized to address the supply-demand balance of the power system. Current EV charging management strategies do not consider user-side demand flexibility and cannot accurately guide users to charge. To address the problem that EV charging demand cannot be accurately directed, this study proposes a fractional-order long-term price guidance mechanism (FLPGM) for EV charging with a bidirectional prediction based on an attention mechanism (AM). The FLPGM combines an AM with a bidirectional gated recurrent unit (BiGRU) and a long-short term memory (LSTM) and applies a high-precision fractional-order stochastic dynamic differentiation method that considers the effects of community health index, EV types, commuting distance, holidays, and power status on charging demand. FLPGM can equate customer charging demand with REG and reduce the cost of charging to customers, resulting in a balance between supply and demand in a long-term electricity market environment. In this study, FLPGM is applied to an electric vehicle charging model (EVCM) for experiments. The test results show that: the charging load of EVs under the FLPGM matches the energy supply by 98.85%; the EVCM under the FLPGM has a charging cost of only 67.61% of the cost in the natural state and can save 79.93% of the potential savings; the EVCM under the FLPGM maintains the balance between supply and demand while reducing charging costs for users, maximizing the benefits for all parties.

Keywords: Adaptive energy market; Price guidance; Adaptive energy; Electric vehicle charging model (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224004110
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004110

DOI: 10.1016/j.energy.2024.130639

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004110