EconPapers    
Economics at your fingertips  
 

Enhancing tidal current turbine efficiency through multi-biomimetic blade design features

Yanling Chen, Wenxian Yang, Kexiang Wei and Bo Qin

Energy, 2024, vol. 293, issue C

Abstract: To achieve an efficient tidal current turbine (TCT), the impact of three biomimetic trailing edge designs (i.e., slabbing, slab-toothed, and serrated), a blade configuration design (i.e., sweep design) and their various combinations on TCT's power coefficient are numerically and experimentally studied in this paper. The novelty of this paper lies in its pioneering exploration of the synergistic effects of multiple biomimetic designs on the TCT's power generation and start-up performance, as well as the interplays between the sweep design and biomimetic trailing edge designs. Both numerical simulations and experimental studies provide compelling evidence that all three biomimetic trailing edge designs enhance the blade's energy capture efficiency. For example, at a 7° angle of attack, the lift-to-drag ratio for the slabbing trailing edge blade increases by 12.124% and the slab-toothed trailing edge blade increases by 11.770% compared to the standard blade. The incorporation of sweep design and biomimetic trailing edge design produces a further enhancement in both the TCT's power generation and startup performance. In particular, the simultaneous implementation of slabbed trailing edge design and sweep design makes the power generation efficiency of TCT increase by up to 54.72% when compared to TCTs using standard straight blades.

Keywords: Biomimetic blade; Power coefficient; Tidal current turbine; Lift-to-drag ratio (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224004183
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004183

DOI: 10.1016/j.energy.2024.130646

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004183