Effects of pore water-rock reaction on heat extraction from the karst geothermal reservoirs: Based on the dual media model
Jiayan Ji,
Xianzhi Song,
Junlin Yi,
Guofeng Song and
Gaosheng Wang
Energy, 2024, vol. 293, issue C
Abstract:
Fractures and caves are the main flow and storage channels for the karst geothermal reservoirs, and the water-rock reaction within them significantly affects the thermal performance. Most previous studies concentrated on the fractures, disregarding the impact of the pore water-rock reaction. The objective of this study is to explore the importance of pore water-rock reactions and identify the influence of various parameters when considering pore and fracture water-rock reactions. A 3D thermal-hydraulic-chemical coupling model considering dual media of pores and fractures was developed. The importance of pore water-rock reactions is demonstrated, and quantitatively characterize the effect of injection temperature (Tin), injection rate (Qin), injection concentration (cin), and ratio of the reaction-specific surface area between pore and fracture (Ap/Af) on the thermal performance. Results indicate that the pore water-rock reaction drastically affects the hydraulic conductivity and pressure difference, even leading to an opposite trend. The influence of water-rock reaction in pores on fracture deformation is regulated by Ap/Af, which augments with Ap/Af. The relative contribution of Ap/Af to production temperature, net thermal power, pressure difference, and hydraulic conductivity are 12.8%, 4.1%, 6.8%, and 13.7%, respectively. This study provides a significant guide for accurate production prediction and exploitation of karst-based geothermal reservoirs.
Keywords: Karst-based thermal reserve; Pore structure; Fracture aperture; Water-rock reaction; Thermal performance (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224004237
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004237
DOI: 10.1016/j.energy.2024.130651
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().