A hybrid model with combined feature selection based on optimized VMD and improved multi-objective coati optimization algorithm for short-term wind power prediction
Chao Wang,
Hong Lin,
Heng Hu,
Ming Yang and
Li Ma
Energy, 2024, vol. 293, issue C
Abstract:
With the continuous global increase in installed wind power capacity and subsequent surge in power generation, the contradiction between the safe operation of the grid and the efficient consumption of new energy after large-scale grid connection has become increasingly prominent. This paper presents a hybrid model prediction method to further improve the stability and accuracy of wind power prediction. Firstly, variational modal decomposition (VMD) optimized by the coati optimization algorithm (COA) is employed to decompose original wind power, mitigating the non-stationary characteristics of the power sequence. Subsequently, permutation entropy (PE) is used to recombine the decomposed components, and the combined feature selection method is achieved by integrating the Spearman correlation coefficient (SCC) and the autocorrelation function (ACF). Then, the multivariate combined model is constructed, and the improved multi-objective coati optimization algorithm (IMOCOA) determines the weight coefficients of each model to enhance the performance of the hybrid model. Finally, research and analysis are conducted from multiple scenarios and time scales using historical operating data from a wind farm in Xinjiang. The experimental results show that the proposed prediction model effectively improves the accuracy and stability of the wind power prediction compared with other popular prediction models.
Keywords: Variational mode decomposition; Improved multi-objective coati optimization algorithm; Combined feature selection; Hybrid model (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224004560
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004560
DOI: 10.1016/j.energy.2024.130684
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().