EconPapers    
Economics at your fingertips  
 

Modeling risk characterization networks for chemical processes based on multi-variate data

Qianlin Wang, Jiaqi Han, Feng Chen, Su Hu, Cheng Yun, Zhan Dou, Tingjun Yan and Guoan Yang

Energy, 2024, vol. 293, issue C

Abstract: Risk characterization plays a crucial role in ensuring safe and stable chemical processes. However, existing studies cannot mine the deep-level relationships between multi-variate process data, resulting in un-detailed characterization results. Hence a multi-variate data-driven modeling method of risk characterization networks is proposed for chemical processes in this paper. The method particularly combines the Spearman's rank correlation coefficient and Apriori algorithm. Firstly, the Spearman's rank correlation coefficient is used to analyze the correlations between multi-variate process data. Secondly, the Apriori algorithm is further applied to mine the internal association rules of process data. Thirdly, a risk characterization network model is established using the complex network theory. To illustrate its validity, the Tennessee Eastman Process (TEP) and a catalytic cracking process are selected as test cases. Results show that the risk states of chemical processes can be effectively characterized, and the risk roots can also be reasonably identified and traced.

Keywords: Chemical processes; Risk characterization; Multi-variate data; Spearman's rank correlation coefficient; Apriori algorithm; Complex networks (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224004614
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004614

DOI: 10.1016/j.energy.2024.130689

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004614