Enhancement of aromatics and syngas production by co-pyrolysis of biomass and plastic waste using biochar-based catalysts in microwave field
Biao Wang,
Yasen Chen,
Wei Chen,
Junhao Hu,
Chun Chang,
Shusheng Pang and
Pan Li
Energy, 2024, vol. 293, issue C
Abstract:
In this study, O-rich biomass (bamboo) was co pyrolyzed with H-rich plastic waste (PE) based on the biochar-based catalysts to investigate the yield and quality of pyrolysis oil and syngas. Focusing on the variations of aromatics and phenolics, to reveal the synergetic mechanism between biomass and PE in microwave field. Biomass is “rich in O and lack of H″, and waste plastics are “rich in C and rich in O″ which can provide a lot of H radicals for catalytic pyrolysis of biomass, improve the quality of bio-oil. And the active factors of biomass effectively activated PE. The biochar-based catalysts further promoted deoxygenation and arylation reactions, intensifying the generation of aromatics and reducing oxygen-containing compounds (phenols, etc.). Bamboo: PE = 1: 3 catalyzed by Zr-modified biochar-based catalysts resulted in aromatics yielded as high as 74.13%, while phenols yields was only 9.39%. Incorporation of the externally H-donor PE promoted the growth of carbon chains, and the microwave field activated free radicals which facilitated the cyclization and arylation of carbon. The biochar-based catalysts also promoted the generation of high-value monocyclic aromatics by utilizing the selective ability in the microwave field. Finally, the coupled synergistic mechanism of co-pyrolysis in microwave field was proposed.
Keywords: Biomass; Plastic waste; Co-pyrolysis; Biochar-based catalyst (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224004833
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004833
DOI: 10.1016/j.energy.2024.130711
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().