EconPapers    
Economics at your fingertips  
 

Experimental study on thermal modification characteristics of entrained-flow gasified fine ash using circulating fluidized bed

Wenyu Wang, Wei Li, Qiangqiang Ren and Qinggang Lyu

Energy, 2024, vol. 293, issue C

Abstract: Gasified fine ash (GFA) exhibits poor reactivity due to its low carbon content and high ash content, which restricts its potential for combustion utilization. To enhance the reactivity of GFA, we employed a circulating fluidized bed (CFB) as a thermal modification unit (TMU) to thermally modify GFA from different entrained-flow gasifiers. We also experimentally investigated the impact of equivalence ratio, temperature, and feedstock moisture content on the thermal modification of GFA. After thermal modification of GFA, the pore structure of modified fine ash (MFA) was significantly improved, the proportion of active sites in residual carbon increased, and the proportion of graphitized structures decreased. An appropriate increment in the equivalence ratio increased the number of carbon active sites in MFA. A good thermal modification effect was found on the GFA produced by different types of gasification furnaces. The temperature rise promoted gasification reaction in the TMU and restricted carbon conversion, thus decreasing the consumption of combustible residual carbon. An increase of water content in the GFA improved the pore structure, but excessive water caused adverse effects.

Keywords: Gasified fine ash; Thermal modification; Reactivity; Circulating fluidized bed (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224004869
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004869

DOI: 10.1016/j.energy.2024.130714

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004869