The seepage driving mechanism and effect of CO2 displacing CH4 in coal seam under different pressures
Zhenbao Li,
Shaorui Wang,
Gaoming Wei,
Hu Wang,
Haizhang Zhao and
Rui Liang
Energy, 2024, vol. 293, issue C
Abstract:
The technology of CO2-ECBM holds the potential to enhance the efficiency of coalbed CH4 extraction by boosting the driving force of CH4 seepage and the desorption of adsorbed CH4 in coal. To investigate the seepage characteristics and displacement effects of gas during CO2-ECBM, the experiment of CO2 displacing CH4 in coal was conducted using a triaxial experimental system within a displacement pressure range of 1.5–4.0 MPa. The results showed that increased displacement pressure led to large coal swelling. This swelling caused a reduction in permeability, leading to high resistance to gas flow and the generation of elevated pore pressure. The distribution of the pore pressure in coal displayed a nonlinear feature, predominantly influenced by coal swelling during CO2 adsorption process. With the injection of CO2, the pressure field in the coal transitioned from an unstable to a stable state. The coal strain induced by CO2/CH4 adsorption-desorption varied, leading to the variation in pore pressure gradient and seepage flow rate, which ultimately impacted the displacement efficiency. The evolution of pressure field during CO2-ECBM provides valuable guidance for displacement effects. It contributes to a parametric optimization for CO2-ECBM application in CH4 extraction.
Keywords: Coalbed methane; Displacement pressure; Permeability; Swelling; Diffusion; Seepage (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224005127
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:293:y:2024:i:c:s0360544224005127
DOI: 10.1016/j.energy.2024.130740
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().