EconPapers    
Economics at your fingertips  
 

Correlation and stage change of key groups and thermal effects of spontaneous coal combustion due to long-term ultraviolet illumination

Xun Zhang, Huimin Liang, Bing Lu, Ling Qiao, Ge Huang, Chen Yu and Jiahui Zou

Energy, 2024, vol. 293, issue C

Abstract: This study aimed to unveil the correlation between the changes in active groups and thermal effects during the spontaneous coal combustion under prolonged ultraviolet (UV) irradiation. In situ Fourier transform–infrared spectroscopy (FTIR) and microcalorimetry (C80) experiments were conducted. Thermodynamic analysis, Pearson's correlation analysis, and Grey Relational Analysis (GRA) were employed to analyze the raw coal (R0) and the coal after UV irradiation for 3, 6, 9, and 12 months (R3, R6, R9, and R12). The results indicated that UV irradiation promotes the generation of Ar-CH, –CC-, CO, and –OH, while causing the consumption of –CH3. This promoting effect gradually increases within the first 6 months and then diminishes after 6 months. A thermodynamic analysis revealed a consistent trend in the apparent activation energy during Stages I and II, where R0Keywords: UV irradiation of coal; Thermodynamic properties; Correlation analysis; Key active groups; Stage changes (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224005474
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:293:y:2024:i:c:s0360544224005474

DOI: 10.1016/j.energy.2024.130775

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224005474