An integrated energy system “green-carbon” offset mechanism and optimization method with Stackelberg game
Hui Hou,
Xiangdi Ge,
Yulin Yan,
Yanchao Lu,
Ji Zhang and
Zhao Yang Dong
Energy, 2024, vol. 294, issue C
Abstract:
The low-carbon economic operation of integrated energy systems (IES) cannot be separated from the carbon trading and green certificate trading market. Therefore, a low-carbon market mechanism and optimization method for IES is proposed. First, we establish a “green-carbon” offset mechanism to realize the conversion from tradable green certificate (TGC) to carbon quotas to offset system's carbon emissions. Second, considering the impact of market incentives and users' consumption behavior on IES, an energy management method of IES is put forward based on Stackelberg game. IES operators as leaders decide energy prices and trading strategies of carbon, TGC and multi-energy. Energy users as followers participate in the integrated demand response based on energy price. The game is solved by an improved adaptive catastrophic genetic algorithm and CPLEX solver. Finally, we take an industrial park in China as an example to analyze. The results show that the proposed method can significantly reduce the system's carbon emissions while improving the benefits for both IES and consumers.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422400389X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s036054422400389x
DOI: 10.1016/j.energy.2024.130617
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().