The impacts of local wind power objection on the power system of the Midcontinent Independent System Operator area
Nguyen, Nhu “Claire” and
David R. Johnson
Energy, 2024, vol. 294, issue C
Abstract:
Using the Regional Energy Deployment System (ReEDS) model, we estimate the deadweight loss imposed by county-level wind power development restrictions in the form of increased electricity costs due to suboptimal siting. This is accomplished by optimizing the power system of the United States' Midcontinent Independent System Operator (MISO) from 2020 to 2050. We perform the optimization with and without land-use constraints arising from simulated potential local ordinances restricting wind power development, and under multiple scenarios reflecting different renewable portfolio standards (RPS). We find that local restrictions on wind power increase the total system cost by 0.15%–0.3% and the wholesale electricity price by 1.8%–2.7%, depending on the RPS scenario. Changes in the generation and installed capacity mixes are more substantial and depend on both the level of county restrictions on wind power, and RPS requirements, thus indicating an interaction between RPS requirements and local wind power restrictions. We also find that plausible restrictions on wind development do not pose major barriers to meeting renewable energy targets in a cost-effective manner.
Keywords: Renewable energy; Land use; Optimization modeling; Uncertainties (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224004997
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s0360544224004997
DOI: 10.1016/j.energy.2024.130727
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().