EconPapers    
Economics at your fingertips  
 

A CNN-SAM-LSTM hybrid neural network for multi-state estimation of lithium-ion batteries under dynamical operating conditions

Cheng Qian, Hongsheng Guan, Binghui Xu, Quan Xia, Bo Sun, Yi Ren and Zili Wang

Energy, 2024, vol. 294, issue C

Abstract: Accurately estimating the state of charge (SOC), state of energy (SOE), and state of health (SOH) online is a critical and urgent concern in the management of lithium-ion batteries for electric vehicle applications, particularly in terms of safety and reliability. This paper develops a hybrid neural network, abbreviated as CNN-SAM-LSTM model, which combines a convolutional neural network, self-attention mechanism, and long-short term memory neural network to jointly estimate the state parameters of lithium-ion batteries, including SOC, SOE, and SOH. Additionally, a joint loss function considering homoscedastic uncertainty is developed to optimize weight adjustments for the training losses associated with the three state parameters. Experimental data collected under UDDS, BBDST and CC discharge conditions are employed to showcase the effectiveness of the proposed CNN-SAM-LSTM model. The results demonstrate that the proposed model is capable of simultaneously and accurately estimating SOC, SOE, and SOH for lithium-ion batteries under different dynamical operating conditions. Moreover, when applied to randomly segmented data, the proposed model exhibits robustness, effectively handling deviations from random discharge segments.

Keywords: Lithium-ion battery; State of charge; State of energy; State of health; Multi-state estimate (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422400536X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s036054422400536x

DOI: 10.1016/j.energy.2024.130764

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:294:y:2024:i:c:s036054422400536x