EconPapers    
Economics at your fingertips  
 

Development and assessment of a novel isobaric compressed hydrogen energy storage system integrated with pumped hydro storage and high-pressure proton exchange membrane water electrolyzer

Ruifeng Cao, Weiqiang Li, Ziqi Chen and Yawei Li

Energy, 2024, vol. 294, issue C

Abstract: In the work, a novel isobaric compressed hydrogen energy storage system integrated with pumped hydro storage and high-pressure proton exchange membrane water electrolyzer is proposed to improve system performance. By integrating pumped hydro storage, the gas storage chamber can operate with a constant pressure at a counter-hydraulic pressure, enhancing the effectiveness and energy storage density of the system. Utilizing high-pressure proton exchange membrane water electrolyzer technology directly to produce high pressure hydrogen and oxygen simplifies the system structure by eliminating the need for gas compressors and cooling unit, thereby improving system stability. Additionally, insulated storage reservoirs are employed in the proposed system to store working fluids, maximizing system performance by minimizing potential waste heat losses. Furthermore, the electrical, thermal, and exergy efficiencies, as well as energy storage density of the proposed system, are assessed using thermodynamic techniques. The results indicate that the round-trip electrical efficiency, round-trip thermal efficiency, round-trip exergy efficiency, and energy storage density of the system can reach 35.39%, 81.03%, 37.89% and 53.46 kWh/m3, respectively. Lastly, parametric studies are conducted to further evaluate system performance under various working conditions.

Keywords: Isobaric compressed hydrogen energy storage; Pumped hydro storage; High-pressure proton exchange membrane water electrolyzer; High-energy density; Thermodynamic analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422400570X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s036054422400570x

DOI: 10.1016/j.energy.2024.130798

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:294:y:2024:i:c:s036054422400570x