EconPapers    
Economics at your fingertips  
 

CO2 reduction to CH4 by Methanosarcina barkeri and a mixed methanogenic culture using humin as sole electron donor

Dan Chen, Haoyi Pei, Ningli Zhou and Zhixing Xiao

Energy, 2024, vol. 294, issue C

Abstract: In this study, we show that wetland sediment-sourced humin (HMWS) could act as the sole electron donor for promoting the reduction of CO2 to CH4 by Methanosarcina barkeri and a mixed methanogenic culture (ME consortium) with maximum methanogenic rates of 0.0025 ± 0.001 and 0.026 ± 0.003 mmol/d, respectively. 93.27% ± 2.06% and 96.35% ± 3.18% of the electrons derived from HMWS were used to produce CH4 by M. barkeri and the ME consortium. Spectroscopic analyses revealed that multiple redox groups were involved in the electron-donating process of HMWS. Molecular microbial analyses indicated that the archaeon Methanosarcina and bacteria Desulfovibrio were dominant in the ME consortium and that cytochrome c played an important role in the bio-oxidation of HMWS. Methanogenesis of M. barkeri with HMWS as an electron donor strongly depended on the HMWS dosage and NaCl and NH4Cl concentrations. Apart from these factors, the ME consortium was also sensitive to NaHCO3 concentration. The results showed that HMWS might relieve NaHCO3, NaCl, and NH4Cl stresses on methanogenesis with ME consortium, and HMWS could be regenerated to promote methanogenesis, indicating its potential for practical applications.

Keywords: Biogas upgrading; Humin; Methanogenesis; Methanosarcina barkeri; ME consortium; Regeneration (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224006133
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006133

DOI: 10.1016/j.energy.2024.130841

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006133