An analytical study on the effect of different photovoltaic technologies on enviro-economic parameter and energy metrics of active solar desalting unit
Vivek Singh,
Rakesh Kumar,
Abhishek Saxena,
Ritvik Dobriyal,
Sumit Tiwari and
Desh Bandhu Singh
Energy, 2024, vol. 294, issue C
Abstract:
The enviro-economic and energy metrics analyses of the solar system by incorporating different photovoltaic technologies are required to fulfill the sustainable development goal of the United Nations. However, the effect of different photovoltaic technologies on the solar distillation system has not been informed by any of the researchers to date. This research gap has been explored in this study. The present manuscript is an endeavour to explore the best photovoltaic technology aimed at a single-slope solar desalting unit comprised of N identical photovoltaic thermal flat-plate-collectors. Data regarding all four weather conditions for a year for New Delhi's climate have been procured from the Indian Meteorological Department situated in the western part of India. Fundamental equations along with input data have been provided to a computational code developed in MATLAB for the estimation of various performance parameters. Concludingly, the energy payback time is minimum (1.64 years) for the case of copper indium gallium selenide photovoltaic technology, however, maximum values of life cycle conversion efficiency and net CO2 mitigation are respectively 0.171 and 199.10 tons of CO2 for the case of crystalline silicon photovoltaic technology. The carbon credit is also found to be a maximum (15269.25 US$) for crystalline silicon photovoltaic technology.
Keywords: Embodied energy; Carbon credit earned; Packing factor; Energy metrics; Enviro-economic parameter; Solar still (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224006236
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006236
DOI: 10.1016/j.energy.2024.130851
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().