Construction of macromolecular model of coal based on deep learning algorithm
Hao-Dong Liu,
Hang Zhang,
Jie-Ping Wang,
Jin-Xiao Dou,
Rui Guo,
Guang-Yue Li,
Ying-Hua Liang and
Jiang-long Yu
Energy, 2024, vol. 294, issue C
Abstract:
The construction of macromolecular models for the amorphous structure of coal can help reveal its physicochemical properties from a microscopic perspective and provide insight into its reaction mechanisms, leading to the development of cleaner coal technologies. However, this process requires careful consideration of characterization information. Researchers often need to intervene manually, which makes the task time-consuming. In this study, we proposed a multi-modal deep learning technique, namely ClipIRMol (contrastive language-image pre-training for infrared-molecule), for predicting coal molecular fragments based on the reverse molecular design method. On this basis, a structure evolution algorithm was developed to transform these fragments into a complex molecular structure model. Our approach takes elemental analysis, IR spectrum, and 13C NMR data as inputs. It is capable of constructing highly accurate molecular models of any different types of coal with atom count ranging from tens to thousands in just a few minutes. These spectra were simulated by quantum chemical calculations to show alignment with their experimental data. The introduced 3D molecular models grounded in topological structures overcome the limitation of traditional nearly-planar structures. This offers a new direction for macromolecular modeling of amorphous organic macromolecules.
Keywords: Coal; Structural model; Inverse molecular design; Multimodal deep learning; Infrared spectrum (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224006285
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006285
DOI: 10.1016/j.energy.2024.130856
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().