EconPapers    
Economics at your fingertips  
 

Integrated operation and efficiency analysis of CaCO3/CaO in a fixed-bed reactor for thermochemical energy storage

X.K. Tian, S.J. Guo, L. Jiang, S.C. Lin, J. Yan and C.Y. Zhao

Energy, 2024, vol. 294, issue C

Abstract: Calcium-based thermochemical energy storage (TCES) has attracted much attention in solar energy utilization and storage. However, the investigations of the CaCO3/CaO system are incomplete and poorly integrated at the reactor scale. In this work, a fixed-bed reactor for calcium looping (CaL) is used to conduct the integrated operation of energy storage and release. The decomposition conversion of CaCO3 in N2 at 850 °C for 8 h is 63.8% and the carbonation conversion of the corresponding decomposition product is 67.2% in CO2 at 750 °C for 4 h. The lower reactor filling increases overall thermal energy storage efficiency but decreases released energy. Furthermore, a simulation model is built to study the key operation parameters that greatly affect reactor performances. According to the orthonormal design, the high calcination temperature and porosity of 0.6–0.7 are key factors to improve both high thermal energy storage efficiency and released energy. The carbonation temperature and thermal conductivity are less important factors than decomposition temperature and porosity, which can be adjusted flexibly to meet the needs of heat utilization and cost reduction. This work provides valuable guidance for optimizing reactor operation and modifying materials to achieve high overall efficiency and released energy in fixed-bed reactors.

Keywords: Thermochemical energy storage; Calcium looping; Fixed-bed reactor; Integrated heat storage and release; Efficiency and energy analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422400639X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s036054422400639x

DOI: 10.1016/j.energy.2024.130867

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:294:y:2024:i:c:s036054422400639x