EconPapers    
Economics at your fingertips  
 

Point and interval wind speed forecasting of multivariate time series based on dual-layer LSTM

Haipeng Zhang, Jianzhou Wang, Yuansheng Qian and Qiwei Li

Energy, 2024, vol. 294, issue C

Abstract: Accurate prediction of wind speed is significant importance in various applications such as renewable energy management, weather prediction, and aviation safety. However, more papers only focus on the time series of wind speed, ignoring the impact of other factors on wind speed, which will reduce the effectiveness of wind speed prediction. Therefore, an innovative methodology is suggested for both point and interval forecasts of multivariate wind speed time series using a Dual-layer Long Short-Term Memory (NVDL) in this paper. The proposed multivariate forecasting model takes into account the dependencies and correlations among different variables, which are essential for capturing the complex dynamics of wind speed variations. The first layer of the Dual-layer LSTM is responsible for capturing the temporal dependencies within each variable individually, while the second layer captures the interdependencies among the variables. By incorporating this dual-layer architecture, our model effectively captures the complex spatiotemporal patterns present for multivariate wind speed information. The results obtained from both interval and point prediction demonstrate that the proposed methodology outperforms all comparative models in the precision and stability of wind speed forecasting. Therefore, the proposed forecasting methodology, characterized by minimal prediction errors and exceptional generalization ability, can be a reliable tool for smart grid programming.

Keywords: Interval forecasting; Point forecasting; The dual-layer LSTM; Wind speed (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224006479
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006479

DOI: 10.1016/j.energy.2024.130875

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006479