The wind tunnel test research on the aerodynamic stability of wind turbine airfoils
Yaya Jia,
Jiachen Huang,
Qingkuan Liu,
Zonghan Zhao and
Menghui Dong
Energy, 2024, vol. 294, issue C
Abstract:
The issue of nonlinear aerodynamic stability of blades is a significant technological bottleneck in the development of large-scale wind turbines. In order to explore the influencing parameters and mechanisms of the nonlinear aerodynamic stability of large-scale wind turbine blades, the flexible blade was simplified into a two-dimensional rigid blade segment with elastic supports, which formed the pitch single-degree-of-freedom aeroelastic wind tunnel test system. Through wind tunnel vibration and pressure measurement synchronization tests, the torsional vibration characteristics and the flow field development mechanism of the airfoil under different wind speeds and attack angles were studied in detail. The wind tunnel tests revealed two distinct torsional aeroelastic behaviors: the static equilibrium state with negligible amplitude and high vibrational randomness, and the stall flutter state with larger amplitude, which was changed according to sinusoidal law substantially. The stall flutter state was confined within a specific wind speed range, and its stability boundary, which included the critical initiation wind speed and the critical cessation wind speed, all varied linearly with the installation attack angle. The growth rate of the critical cessation wind speed with the installation attack angle was significantly higher than that of the critical initiation wind speed, making the wind speed range for the occurrence of stall flutter also linearly larger. Additionally, the frequency of the stall flutter was significantly higher than the natural frequency of the model, and it exhibited a positive correlation with the critical initiation wind speed. The flow state around the airfoil during stall flutter was primarily distinguished from its static counterpart by the presence of leading-edge vortices. The formation and shedding of these leading-edge vortices would significantly influence the characteristics of stall flutter.
Keywords: Wind turbine airfoil; Aerodynamic stability; Wind tunnel test; Stall flutter; Stability boundary (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224006613
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006613
DOI: 10.1016/j.energy.2024.130889
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().