Design and decoupling analysis of Thermal–Electric energy comprehensive utilization scheme based on “diamond” active cooling thermal protection system for hypersonic vehicle
Yancong Qiao,
Wei Liu,
Yao Pan,
Mengmeng Gong and
Zhichun Liu
Energy, 2024, vol. 294, issue C
Abstract:
High–temperature aerodynamic heat threatens the safe cruise of hypersonic vehicles, but it also contains huge energy utilization potential. In this study, the thermal–electric energy comprehensive utilization scheme was proposed to combine the energy conversion technology (ECT) with active cooling thermal protection system (ACTPS). The mass flow rate (M) varied from 0.008 kg s−1 to 0.2 kg s−1 for each channel with the inlet fluid temperature being set to 253 K. It was investigated that the leading edge of the “Enhanced” model forms longitudinal swirls. The inner and outer wall temperatures of the “Enhanced” model were lower than 275 K and 650 K, respectively, at mass flow rate of 0.076 kg s−1. Moreover, the thermoelectric performance of five different parameters (Bi2Te3 height (L1), SiGe height (L2), width for unit (H), inner wall temperature (Tin) and heat power (QT)) was explored. L1 = 1.0 mm, L2 = 0.5 mm and H=1.5 mm were selected as the optimal parameters combination for engineering applications. Within the range of QT from 0.15 W to 0.9 W, the variations range of rated current (Irc), energy conversion efficiency (ηe) and specific power (Ps) for the optimal parameters were 140 mA–460 mA, 0.69 %–2.61 % and 0.016 W g−1–0.373 W g−1, respectively.
Keywords: Energy comprehensive utilization; Thermoelectric generator; Active cooling thermal protection system; Energy conversion technology; Hypersonic vehicles (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224006789
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006789
DOI: 10.1016/j.energy.2024.130906
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().