EconPapers    
Economics at your fingertips  
 

Experimental study on the impact of Miller cycle coupled EGR on a natural gas engine

Dan Wang, Minneng Kuang, Zhongshu Wang, Xing Su, Yiran Chen and Demin Jia

Energy, 2024, vol. 294, issue C

Abstract: The Miller cycle has significant advantages of suppressing knocking and improving nitrogen oxide (NOX) emissions without the penalties of reducing engine fuel consumption and power output. In the study, the effect of non-Miller cycle and Miller cycle on the exhaust gas recirculation (EGR) introduction capability and the knocking boundary were evaluated on a stoichiometric combustion natural gas engine at three different loads. Additionally, the effect of Miller cycle coupled EGR and ignition timing on engine performance and combustion process was discussed. The results indicate that, for the same condition, the Miller cycle could reduce peak temperature and pressure, increased combustion duration, and delayed combustion phase, which makes for effective knocking suppression. Therefore, the Miller cycle has less dependence on the EGR strategy to control knock. Moreover, the Miller cycle can also reduce the ability to introduce EGR, which could up to 3.8%. By matching the ignition timing and EGR rate, the BSFC of the Miller cycle were decreased by 0.6g/kW·h, 2.4 g/kW·h and 2.9 g/kW·h respectively for three test conditions compared with non-Miller cycle. In terms of emissions, the Miller cycle and EGR can both suppress NOX emissions, while the EGR being more effective. The study will provide valid information for the application of the Miller cycle to achieve efficiency clean combustion of natural gas engine.

Keywords: Natural gas; EGR; Miller cycle; Ignition timing (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224006832
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006832

DOI: 10.1016/j.energy.2024.130911

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006832