Improvement and prediction of particles emission from diesel particulate filter based on an integrated artificial neural network
Jiahao Ye,
Wenming Yang,
Qingguo Peng and
Haili Liu
Energy, 2024, vol. 294, issue C
Abstract:
Diesel Particulate Filter (DPF) stands out as a highly effective device for mitigating emissions in engines. To enhance DPF regeneration performance, the numerical model and the GA-BP neural network model are developed, which delves into the impacts of velocity, temperature, oxygen mass fraction, and particles size on particulate conversion. The results show that conversion rate of carbon particles can be elevated by increasing the oxygen mass fraction and inlet velocity. Specifically, the conversion rate demonstrates a remarkable improvement of 37.41% at Tin = 600 K, de = 5 μm, Vin = 10 m/s, and mO2 increased from 0.01 to 0.04. Additionally, conversion rates are increased as the size of the carbon particles gradually reduced. Besides, a GA-BP neural network is deployed to analyze and predict the numerical results of 1818 sets of DPFs under different operating conditions. From the analysis and prediction of 132 data sets, and it is discerned that a high state of contamination transformation can be achieved at Tin = 525 K, de = 5 μm, Vin = 12 m/s and mO2 = 0.04. This demonstrates the significance of judiciously selecting boundary conditions for realizing effective regenerative emission reduction.
Keywords: Diesel particulate filter; GA-BP neural network; Regeneration performance; Porous media; Conversion rate (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224006911
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006911
DOI: 10.1016/j.energy.2024.130919
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().