Scaling of wave energy converters for optimum performance in the Adriatic Sea
Ivana Martić,
Nastia Degiuli and
Carlo Giorgio Grlj
Energy, 2024, vol. 294, issue C
Abstract:
The wave energy potential in the Adriatic Sea is investigated at seven offshore locations, and the mean annual energy, average electric power production, operating hours, as well as the coefficient of variation of the monthly power production are determined for three wave energy converters. Since wave energy converters are commonly designed and optimized to extract energy from ocean waves, they have low capacity factors in low-energy seas or bays such as the Adriatic Sea, where the sea states are slight to moderate. The scaling of the wave energy converters is performed on the basis of the Froude scaling law for AquaBuoy and Pelamis devices. The results of WECs at eleven scales are compared with those obtained for a Lysekil WEC. The obtained results show that the capacity factors of the downscaled WECs increase significantly at their optimum scales, reaching about 29 % and 42 % for the AquaBuoy and Pelamis, respectively, depending on the location. By comparing the results obtained for the AquaBuoy and Pelamis at a scale of 0.7 with the results of a full-scale Lysekil WEC, it may be concluded that the downscaled WECs may be more suitable for the considered locations in the Adriatic Sea while keeping their economic viability.
Keywords: Wave energy; Adriatic sea; WEC; Downscaling; Capacity factor (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224006947
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006947
DOI: 10.1016/j.energy.2024.130922
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().