EconPapers    
Economics at your fingertips  
 

Enabling intelligent transferable energy management of series hybrid electric tracked vehicle across motion dimensions via soft actor-critic algorithm

Hongwen He, Qicong Su, Ruchen Huang and Zegong Niu

Energy, 2024, vol. 294, issue C

Abstract: Due to the complex driving conditions faced by hybrid electric tracked vehicles, energy management is crucial for improving fuel economy. However, developing an energy management strategy (EMS) is a time-consuming and labor-intensive task, which is challenging to generalize across different driving tasks. To solve this problem and shorten the development cycle of EMSs, this article proposes a novel transferable energy management framework for a series hybrid electric tracked vehicle (SHETV) across motion dimensions. To fully reuse the learned knowledge from longitudinal motion into both longitudinal and lateral motion, this framework merges transfer learning (TL) into the state-of-the-art deep reinforcement learning (DRL) algorithm, soft actor-critic (SAC), to formulate a novel deep transfer reinforcement learning (DTRL) method, with the transfer of both the neural networks and the pre-trained experience replay buffer. Simulation results indicate that the proposed EMS accelerates the convergence speed by 75.38%, enhances the learning ability by 19.05%, and improves the fuel economy by 5.08% compared to the baseline EMS. This article contributes to correlating different energy management tasks and reusing the existing EMS for the rapid development of a new EMS of the hybrid electric tracked vehicle.

Keywords: Series hybrid electric tracked vehicle; Energy management strategy; Deep transfer reinforcement learning (DTRL); Soft actor-critic (SAC); Experience replay buffer (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224007059
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007059

DOI: 10.1016/j.energy.2024.130933

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007059