Experimental and simulation investigation on the different iron content beta zeolite for controlling the cold-start hydrocarbon emission from a gasoline vehicle
Dandan Han,
Jiaqiang E,
Changling Feng,
Chang Han,
Chuanfu Kou,
Yan Tan,
Yanchun Peng and
Lingyun Wei
Energy, 2024, vol. 294, issue C
Abstract:
In this work, cold start experiments results showed that the HC catcher coated with 1% iron content is more effective than that with 3% iron content, the peak HC emission is reduced from 0.0029 g to 0.0018 g. To further reveal the reasons for the effects of BEA zeolite molecular sieves with different iron contents on HC adsorption, the measured HC emission components (butene, propene, ethene, acetaldehyde, and acetylene) were used as HC simulation molecules for molecular simulation experiments, the simulation results showed that, for single-component adsorption, the adsorption effect of beta zeolite molecular sieves with high iron content was better; for multi-component adsorption, acetaldehyde and butene maintained higher adsorption amounts, and the adsorption of acetaldehyde increased with the increase of the iron content in the beta zeolite molecular sieves; in the presence of water and CO2, the effect of water is greater than that of carbon dioxide, and its effect increases with the increase of iron content in beta zeolite molecular sieves. The maximum adsorption capacity of water can reach 4.5mmol/zeolite, which seriously affected the adsorption of HC molecules. Properly reducing the iron content of BEA zeolite molecular sieve is useful for enhancing its adsorption effect on the main HC simulated molecules.
Keywords: Gasoline vehicle; Cold start; Beta zeolites with different iron contents; HC emission; Molecular simulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224007266
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007266
DOI: 10.1016/j.energy.2024.130954
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().