Evaluation of by-product-gas utilization options for carbon reduction at an integrated iron and steel mill
Tingting Xu,
Zhaoyi Huo,
Wenjing Wang,
Ning Xie,
Lili Li,
Yingjie Liu and
Lin Mu
Energy, 2024, vol. 294, issue C
Abstract:
The comprehensive utilization of steel mill by-product gases is an important method for achieving climate goals. In this study, a comprehensive model is proposed for analyzing carbon-emission reduction strategies of by-product gases comprehensive utilization system at an integrated iron and steel mill. The model is used to explore carbon-emission reduction performance applying blast furnace with top-gas recycling (TGR-BF) and carbon capture and storage (CCS) applications, as well as consequent influence on steam and power cogeneration system (SPCS) operation. Carbon-emission intensity, total emission reduction and unit reduction cost are used to evaluate the carbon reduction result of by-product gases comprehensive utilization system. The results of the study indicate that the upgrade of SPCS can achieve an emission reduction of 311,200 tCO2, and the carbon-emission intensity of the power and heat supply can be reduced by 0.14 tCO2/104 kWh and 0.02 tCO2/GJ, respectively. After TGR-BF technology is applied, the total emission reduction peaks at the top-gas recovery rate of 6%, which is 85,100 tCO2. The unit reduction cost is also minimized at the top-gas recovery rate of 6%. Sensitivity analysis indicates that the reduction of power price significantly reduces the unit reduction cost.
Keywords: Carbon-emission reduction; By-product gases; Steam and power cogeneration system (SPCS); Blast furnace with top-gas recycling (TGR-BF) (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422400731X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s036054422400731x
DOI: 10.1016/j.energy.2024.130959
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().