EconPapers    
Economics at your fingertips  
 

Iterative convex relaxation of unbalanced power distribution system integrated multi-energy systems

Abhimanyu Sharma and Narayana Prasad Padhy

Energy, 2024, vol. 294, issue C

Abstract: This study describes a multi-period, multi-energy operation of a three-phase unbalanced Electric Distribution System (EDS) that coordinates with a District Heating System (DHS) and a Natural Gas (NG) distribution system. The electrical subsystem problem is formulated as a bi-level programming problem, with levels 1 and 2 solving the subsystem’s linearized and relaxed nonlinear versions, respectively. Second-Order Cone Programming (SOCP) and polyhedral relaxations are availed to circumvent the non-convexities involved in the subsystems. The SOCP relaxation for an unbalanced power distribution network is inexact; also, the subsystems applying polyhedral relaxation may not generate a meaningful solution as the relaxations are not tight. Therefore, a solution recovery algorithm is developed for each subsystem to recover a feasible solution from their relaxed counterparts. The successive bound tightening algorithm employing a solution recovery procedure is proposed for each subsystem, improving solution quality and strengthening the relaxations with the desired computational efficiency. The proposed solution strategy to optimize the Multi-Energy System (MES) operation cost is verified on the three-phase IEEE-13 and IEEE-123 bus systems, each coordinating with a 30-node DHS and a 6-bus NG network. The results analyses demonstrate that the proposed solution strategy efficiently achieves an optimal solution, reducing maximum relaxation error below 0.1% for each subsystem. The proposed strategy delivered a 14.58% reduction in real power losses and a 12.73% decrease in phase voltage unbalance rate for the EDS in MES. Furthermore, a 1.96% decrease in operational cost demonstrates the techno-economic benefits of the proposed strategy.

Keywords: ADMM; District heating system; Multi-energy systems; Natural gas; Optimal power flow; Three-phase power distribution systems (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224007461
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007461

DOI: 10.1016/j.energy.2024.130974

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007461