A novel probabilistic gradient boosting model with multi-approach feature selection and iterative seasonal trend decomposition for short-term load forecasting
Priyesh Saini and
S.K. Parida
Energy, 2024, vol. 294, issue C
Abstract:
Existing regression, tree-based and NN models either lacks probabilistic prediction, takes longer training time, have high computational requirements or sacrifice accuracy. This paper introduces a novel framework, (MAFS+ISTD+PGBM), specifically to overcome these limitations. First three challenges are addressed by integrating gradient boosting and quantile regression model. The key idea is to combine speed and scalability of gradient boosting with probabilistic capabilities of quantile regression, forming PGBM. However, the issue of mediocre accuracy still remained. To address this, two pre-processing techniques are introduced. MAFS utilizes statistical methods and knowledge-based analysis to identify the most relevant features, while ISTD extracts and eliminates trend and seasonality components, ensuring stationarity. After rigorous evaluations, (MAFS+ISTD+PGBM) emerges as the superior performer surpassing all existing models in terms of training time and accuracy with highest R2 score of 0.997 and low values across all error metrics. The proposed model took less than one-third of training time (∼15 min) compared to CNN-LSTM+attn., (∼48 min), the only model with comparable accuracy of proposed model. Thus, proposed approach shall be used to empower grid operators with highly accurate and cost-effective probabilistic forecasts which allows them to make informed decisions about system stability and optimize resource utilization, ensuring reliability and efficiency.
Keywords: Probabilistic Gradient Boosting Model (PGBM); Iterative Seasonal Trend Decomposition (ISTD); Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test; Quantile regression; Stationarity; Seasonality (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224007473
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007473
DOI: 10.1016/j.energy.2024.130975
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().