Deep learning-based pore network generation: Numerical insights into pore geometry effects on microstructural fluid flow behaviors of unconventional resources
Bei-Er Guo,
Nan Xiao,
Dmitriy Martyushev and
Zhi Zhao
Energy, 2024, vol. 294, issue C
Abstract:
Pore-scale transport behaviors and mechanisms of rock reservoirs are still not well understood to increase unconventional resource production. This work mainly focuses on proposing a deep learning-based method to rapidly construct optimal pore network with different pore types, and deeply analyze its effects on pore-scale transport behaviors and mechanisms. The pore-scale variables reservoir evaluation indexes are defined to quantitatively evaluate pore geometry effects on the properties and production of rock reservoirs. The two-phase displacement simulations in pore network are conducted to study microstructural flow behaviors and transport mechanisms. Results suggest that the deep learning-based digital labeling algorithm (DL-DLA) has excellent abilities to rapidly construct pore network with errors less than 5%, compared with the classical algorithms. Square pores and circle throats are suggested as the optimal pore network assembly, considering the fluid phase drainage efficiency and production rate. The microstructural transport mechanisms are concluded as the pore-throat drainage, pore-filling, fluid phase mixing and fluid phase equilibrium processes. The novel theoretical relation between fluid phase drainage and microscopic production indexes provides effective tools to estimate rock reservoir production with errors all less than 10%, which are helpful for the technique developments to increase the production of unconventional resources in rock reservoirs.
Keywords: X-ray CT imaging; Deep learning; Microscopic production index; Fluid phase drainage index; Quantitative evaluations (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422400762X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s036054422400762x
DOI: 10.1016/j.energy.2024.130990
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().