EconPapers    
Economics at your fingertips  
 

Two-stage prediction method for capacity aging trajectories of lithium-ion batteries based on Siamese-convolutional neural network

Jingcai Du, Caiping Zhang, Shuowei Li, Linjing Zhang and Weige Zhang

Energy, 2024, vol. 295, issue C

Abstract: Accurate battery lifespan prediction can guarantee battery safety in applications. Considering the complex nonlinear nature of battery degradation, it is more challenging to predict battery aging trajectories utilizing less data. A two-stage prediction method for battery capacity aging trajectories is proposed. The first stage is battery lifespan prediction based on the Siamese-Convolutional neural network (Siamese-CNN). Taking the predicted lifespan as its prior information, the second stage is predicting capacity aging trajectories with the Convolutional neural network (CNN). The method only requires partial voltage-current data from 30 cycles, of which the similarity in different batteries is obtained by the Siamese-CNN. The lifespan-unknown batteries in the testing set are fed into the Siamese-CNN to match the lifespan-known training set battery with the highest similarity. Then, CNN is employed to predict the capacity aging trajectories under different profiles. The ratio of each cell's predicted lifespan to the fixed length of the CNN output sequence is regarded as the interval for uniform sampling to keep the series consistent. The prediction accuracy of the method is validated by an open dataset. It is demonstrated that the battery lifespan and capacity aging trajectory prediction achieve a mean absolute percentage error (MAPE) of 2.44% and 1.28%, respectively.

Keywords: Lithium-ion battery; Battery lifespan prediction; Capacity aging trajectory prediction; Siamese-convolutional neural network (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224007199
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007199

DOI: 10.1016/j.energy.2024.130947

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007199