Performance evaluation of multicombustor engine for Mach3+-Level propulsion system
Li Deng,
Min Chen,
Hailong Tang and
Jiyuan Zhang
Energy, 2024, vol. 295, issue C
Abstract:
Turbine-based combined cycles are widely considered as a propulsion system for hypersonic vehicles. The inadequate performance of turbine-based engines has resulted in thrust traps, thereby limiting the development of turbine-based combined cycles. To satisfy the performance requirements over a wide speed range, a novel Mach 3+-level multicombustor engine is proposed, and its performance potential is investigated, where an intermediate bypass burner reheats the core airflow to generate more cycle work and the second bypass duct heated by a bypass afterburner provides the main source of the engine thrust at high Mach numbers. Results show that the multicombustor engine extends the flight envelope from Mach 2.5 to 3.5 and increases the thrust by 32% compared with the conventional engine. The application of an intermediate bypass burner reduces the turbine pressure ratio by 43%, thereby reducing the number of turbine stages. The concept of a multicombustor engine is promising for designing the power systems of hypersonic vehicles.
Keywords: Thrust trap; Mach 3+-level propulsion system; Multicombustor engine; Intermediate bypass burner; Bypass afterburner (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224007643
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007643
DOI: 10.1016/j.energy.2024.130992
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().