EconPapers    
Economics at your fingertips  
 

Impact of life cycle assessment analysis on energy efficiency projects in Mediterranean residential buildings

Manuela Almeida, Fabrizio Ascione, Teresa Iovane, Margherita Mastellone and Ricardo Mateus

Energy, 2024, vol. 295, issue C

Abstract: The 2023 revision of the Energy Performance of Building Directive underlines the need to consider the whole life cycle emissions for buildings. The decarbonization targets could not be achieved if reduction of energy demand in the operational phase is accompanied by a high energy resource use in the whole life. This paper proposes a novel investigation of an energy renovation project, involving both building envelope components and space heating system. The adopted method is based on the life cycle assessment, in the variant cradle-to-gate with options, to analyze and compare the design data achieved through an analysis of product (embodied) and use (operational) stages. Different solutions for energy improvement of the building performance are identified, and the scenario with the lowest embodied energy was found to be more energy efficient globally. The most effective scenario, with energy and CO2 savings of 39% and 40% is characterized by a weight of embodied energy and emissions of 6.5% and 6.9%, respectively. Given the rise of the weight of the embodied energy in the whole life cycle of future buildings, the life cycle assessment will become crucial for sustainable design and in the transition to an energy-efficiency built environment.

Keywords: Building energy efficiency; Life cycle approach; Cradle to gate with options; Operational stage; Non-operational stages (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224007667
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007667

DOI: 10.1016/j.energy.2024.130994

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007667