A novel system for reducing power plant electricity consumption and enhancing deep peak-load capability
Runchen Wang,
Xiaonan Du,
Yuetao Shi,
Weipeng Deng,
Yuhao Wang and
Fengzhong Sun
Energy, 2024, vol. 295, issue C
Abstract:
Enhancing the operational flexibility of coal-fired power plants is a crucial measure for energy transition. Current heat-power decoupling technologies primarily rely on external heat storage or provision. In order to comprehensively analyze the self-decoupling potential of the units and explore more effective methods to reduce the power plant electricity consumption rate (PPEC), this study proposes an innovative system that utilizes surplus steam from the power plant to drive rotating equipment through multi-stage series-parallel turbines. The study investigates the impact of various steam sources, methods of electrical equipment connection, and exhaust positions on system performance. The results demonstrate that the optimal strategies can lead to an average reduction of PPEC to 2.84%, decrease the power supply coal consumption rate by an average of 12.04 g/kWh, and increase the deep peak-shaving capacity by 35.20 MW during the heating season. During the non-heating season, it can reduce the PPEC by an average of 3.73% and increase the deep peak-shaving capacity by 30.47 MW. The static investment payback period and dynamic investment payback period under the optimal strategy are 5.15 years and 6.09 years, respectively. This research presents a promising approach to enhancing the flexibility of thermal power units by utilizing small steam turbines.
Keywords: Operational flexibility; Heat-power decoupling; Peak shaving; Coal saving; Power plant electricity consumption (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422400803X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:295:y:2024:i:c:s036054422400803x
DOI: 10.1016/j.energy.2024.131031
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().