EconPapers    
Economics at your fingertips  
 

A novel system for reducing power plant electricity consumption and enhancing deep peak-load capability

Runchen Wang, Xiaonan Du, Yuetao Shi, Weipeng Deng, Yuhao Wang and Fengzhong Sun

Energy, 2024, vol. 295, issue C

Abstract: Enhancing the operational flexibility of coal-fired power plants is a crucial measure for energy transition. Current heat-power decoupling technologies primarily rely on external heat storage or provision. In order to comprehensively analyze the self-decoupling potential of the units and explore more effective methods to reduce the power plant electricity consumption rate (PPEC), this study proposes an innovative system that utilizes surplus steam from the power plant to drive rotating equipment through multi-stage series-parallel turbines. The study investigates the impact of various steam sources, methods of electrical equipment connection, and exhaust positions on system performance. The results demonstrate that the optimal strategies can lead to an average reduction of PPEC to 2.84%, decrease the power supply coal consumption rate by an average of 12.04 g/kWh, and increase the deep peak-shaving capacity by 35.20 MW during the heating season. During the non-heating season, it can reduce the PPEC by an average of 3.73% and increase the deep peak-shaving capacity by 30.47 MW. The static investment payback period and dynamic investment payback period under the optimal strategy are 5.15 years and 6.09 years, respectively. This research presents a promising approach to enhancing the flexibility of thermal power units by utilizing small steam turbines.

Keywords: Operational flexibility; Heat-power decoupling; Peak shaving; Coal saving; Power plant electricity consumption (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422400803X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:295:y:2024:i:c:s036054422400803x

DOI: 10.1016/j.energy.2024.131031

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:295:y:2024:i:c:s036054422400803x