EconPapers    
Economics at your fingertips  
 

Fracture conductivity and rock appearance in volcanic reservoirs treated by various stimulation techniques

Nanlin Zhang, Zhifeng Luo, Fei Liu, Xiang Chen, Jianbin Li and Tianshu He

Energy, 2024, vol. 295, issue C

Abstract: Volcanic reservoirs have complex mineral compositions and highly heterogeneous physical and mechanical properties, making their stimulation quite problematic. This study aimed at clarifying acid-rock reaction and stimulation mechanisms in volcanic reservoirs using 3D scanners and conductivity testing devices. Tests on rock sample conductivity and appearance under such mainstream stimulation technologies as hydraulic fracturing, acid fracturing, and proppant-carrying acid fracturing (PCAF) were performed. The effects of proppant particle size, proppant concentration, acid volume and type, proppant-carrying acid type, and proppant-carrying acid concentration on conductivity and rock sample appearance were analyzed. The appearance of rock samples included dot-, pit-, and strip-like embeddings, as well as acid-etching pits and channels. Larger particle sizes and higher proppant concentrations produced wider propped fractures and higher flow conductivity. Due to complex mineral distribution, acid fracturing failed to produce long etched channels, and the obtained conductivity was low, with a maximum of 8 D·cm at a 5 MPa closure stress. Hydraulic fracturing and PCAF reached a maximum flow conductivity of 155 D·cm at a 5 MPa closure stress, indicating their applicability to volcanic reservoir stimulation. This work helps reveal the acid-rock reaction and stimulation mechanisms of volcanic reservoirs and provides a theoretical basis for their development.

Keywords: Volcanic reservoirs; Stimulation mechanism; Acid-rock reaction; Proppant embedding; Conductivity; Rock appearance (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422400817X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:295:y:2024:i:c:s036054422400817x

DOI: 10.1016/j.energy.2024.131045

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:295:y:2024:i:c:s036054422400817x