System development and thermodynamic performance analysis of a system integrating supercritical water gasification of black liquor with direct-reduced iron process
Jingwei Chen,
Yizhen Huang,
Yang Liu and
E. Jiaqiang
Energy, 2024, vol. 295, issue C
Abstract:
Hydrogen metallurgy is an effective way to decarbonize the steel industry. In this study, a new system integrating biomass supercritical water gasification (SCWG) with hydrogen generation-shaft furnace-electric arc furnace (HSE) was proposed. The thermodynamic performance of SCWG-HSE system were analyzed and optimized. The results show that the gasification and energy efficiency of SCWG system increase with an increase in the gasification temperature. The carbon emission of the SCWG-HSE system are effectively reduced, and the product yield and energy efficiency of the system are improved by increasing gasification temperature and recovering furnace top gas. The energy and exergy efficiency of the SCWG-HSE system are 46.66% and 40.17%, respectively. The exergy destruction of SCWG gasifier and electric arc furnace are the major exergy damage sources of the SCWG-HSE system. The exergy efficiency of the ironmaking system reaches 51.60%, and the energy consumption and carbon emission per unit product are 18.49 GJ/t and 902.40 kg/t, respectively. Compared with the traditional Coking-Blast furnace ironmaking process, the energy consumption and carbon emission of this system are reduced by 7.32% and 40.84% respectively. This work is expected to open a new way for the application of biomass in the low-carbon steel industry.
Keywords: Hydrogen metallurgy; Pulping black liquor; Supercritical water gasification; Direct reduced iron; Thermodynamic analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224008661
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008661
DOI: 10.1016/j.energy.2024.131094
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().